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Abstract

This paper proposes a new theory of business cycles based on the idea that financial
uncertainty shocks change the nature of innovation. When investors become more risk
tolerant, they fund riskier startups with greater growth potential. As these ambitious
startups grow, the initial shock propagates and generates a boom in output and employ-
ment. I develop a heterogeneous firm industry model of the US business sector with
countercyclical risk premia and innovation by startups and existing firms. The quantita-
tive implementation of the model jointly matches time series properties of stock returns
and macroeconomic aggregates, as well as micro evidence on firm cohort growth over the
cycle.
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1 Introduction
The goal of macro-finance is understanding the connection between financial markets and
the real economy. Empirical research has established that stock markets, which reflect the
value of firms, are more volatile than the cash flows they generate. Furthermore, the effective
discount rates on risky assets over the risk-free rate, also known as risk premia, appear to be
low when economic conditions are good and high when economic conditions are bad. How
do countercyclical risk premia contribute to macroeconomic fluctuations? Recent literature
studies the impact of uncertainty shocks that generate time variation in risk premia.1 A
common finding is that in the presence of adjustment costs and other frictions, uncertainty
delays investment and reduces hiring. This delay, however, does not inherently induce any
persistent response and is quantitatively small.

This paper proposes a new theory of business cycles in which countercyclical variations in
risk premia change the incentives to innovate in new and existing firms. When risk premia
are low, investors fund riskier startups that are more innovative. If financial conditions remain
favorable, these new firms keep innovating, expand, and generate an economic boom in output
and employment that persists beyond business cycle frequency. Otherwise, the new firms forego
growth opportunities and remain relatively small for the rest of their life cycle. When the price
of risk is high, fewer firms enter overall. Those that do enter have a lower growth potential
but are less exposed to future aggregate shocks. I find that the effect of countercyclical risk
premia on innovation amplifies business cycle fluctuations in output and hours by 60 precent
compared to fluctuations in productivity alone.

I develop a heterogeneous firm model of the US business sector that captures key features
of firm creation, innovation, and exit. Firms maximize shareholder’s value given state prices
and differ in scale and in expected duration. Entrepreneurs create new firms and choose their
expected duration, and incumbent firms endogenously innovate to increase their productive
capacity. Aggregate shocks move the productivity and the effective discount rates on future
profits in opposite directions, reflecting countercyclical risk premia. High expected duration
firms choose to innovate more than low expected duration firms, making them more exposed
to future risk premia, and therefore riskier. I calibrate the model to match the unconditional
moments of stock returns and the detailed firm size by age distribution of all US private firms.
The model also matches the stylized fact that firm cohorts that enter in booms have a greater
share of large firms one year after entry than cohorts that enter in busts.

The quantitative implementation of the model jointly matches time-series properties of
stock returns, output, hours, and firm entry, even though it is driven by just one random shock
process. Stock returns in the model exhibit long booms between recessions and crashes at the
start of every recession, corresponding to the timing and magnitude of realized stock returns
in the data.

1 See for example Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2016), Basu and Bundick (2017).
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The model has two key ingredients. First, there are three firm types that can be chosen
at entry. Traditional firms, such as a neighborhood restaurant, provide a standard service
to an existing market and do not intend to grow much beyond their initial size. Innovative
firms, such as a new Google or Walmart, may also start small, but intend to introduce new
goods or services and expand to more markets. These firms have a lower exit rate and hence
a higher expected duration. Since they have more time to recover the cost of innovation, they
prioritize innovation over generating short-term profits. Innovation in the model stands in for
activities such as development of new products, branding, and training of personnel, which
are contributing to the growth of the firm. As innovative firms grow old, they become mature
firms, which is the third firm type in the model. Mature firms maintain a moderate level of
innovation but grow at a slower pace than innovative firms. The distinction between traditional,
innovative, and mature firms captures the empirical fact that most firms stay small throughout
their life cycle, while some firms grow to be very large. The transformation of innovative firms
to mature firms captures the low growth rate of older firms in the data. Survey evidence
suggesting that entrepreneurs differ in their ex-ante expectations of firm growth justifies the
determination of firm type at entry.2

Second, the market price of risk (MPR) is an exogenous time-varying state variable that
determines the discount rate of future risky payoffs but does not change the risk-free rate.
Empirical research in finance has established that the expected returns on risky assets above
the risk-free rate are countercyclical.3 In the model, firms are risky because their profits are
exposed to shocks to the aggregate total factor productivity (TFP). Therefore, the model
captures countercyclical risk premia with aggregate shocks that move TFP and the MPR in
opposite directions. When TFP is rising and the MPR is falling, the value of firms increases
more than the cash flows they generate. The technology of firm entry and incumbent firm
innovation is time invariant in the model. Thus, when the value of firms increases, startup
entry and incumbent firm innovation increase in response.4 Other models of firm entry and
firm dynamics typically emphasize other frictions and mechanisms and hold the price of risk
constant.

The key mechanism of the model operates through changes in the relative valuation of
traditional and innovative firms over the business cycle. Intuitively, two opposing forces affect
the relative value of firms. Traditional firms have more front-loaded profits, and so their values

2 Hurst and Pugsley (2011) show that entrepreneurs differ in their desire to grow big and in their expectations
for innovation activity, such as the introduction of new products and application for patents, trademarks,
and copyrights. Schoar (2010) argues for a distinction between “subsistence” and “transformational” entre-
preneurs, who have different goals in business creation.

3 See for example Fama and French (1989), Lettau and Ludvigson (2001) and Cochrane and Piazzesi (2005).
4 Kaplan and Schoar (2005) provide evidence that venture capital returns are similar to the returns on publicly

traded stocks, and that the inflow of funds into venture capital is high when stock markets are high. Brown,
Fazzari, and Petersen (2009) provide evidence that R&D expenditure is sensitive to the availability of external
equity.
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increase more when profits increase in response to a positive shock to TFP. This would be the
dominant force in an environment with risk premia set to zero. But innovative firms own more
growth options that are riskier than claims to cash flows from the current productive capacity
of firms. Growth options are riskier because they act as implicit leveraged claims to the future
value of the firm, which is more volatile than the firm’s cash flow.5 A negative shock to the
MPR reduces the effective discount rate on the risky growth-option component of innovative
firm values, and increases their total value relative to traditional firms. With fluctuations in
TFP and MPR corresponding to the co-movement of asset prices and cash flows in the data,
the cyclical effect of risk premia dominates that of profits. Therefore the share of innovative
firms within firm cohorts is procyclical.

I calibrate the model to match unconditional moments of macroeconomic and financial
variables, then evaluate its success at matching untargeted moments and time series properties
of firm entry and financial returns. The calibration of the model also matches the firm size
by age distribution of all US firms based on public-use Census data, which provide discipline
for the entry, exit and growth rates of the three firm types. Despite the parsimonious nature
of the firm type space, the model is able to match the detailed firm distribution data. It also
matches other essential features of firm dynamics, including the observed declining exit rates
and growth rates with firm age, and a conditional version of the empirical regularity known as
Gibrat’s law.6

Stock returns in the model match the unconditional expected stock returns and uncondi-
tional volatility of returns in CRSP data. The model can also deliver a downward sloping
term-structure of risk premia on levered equity, consistent with the empirical findings of van
Binsbergen, Brandt, and Koijen (2012). I construct a simple dividend payout rule that keeps
leverage stationary at the firm level, similar to the rules suggested by Belo, Collin-Dufresne,
and Goldstein (2015). When the ratio of debt to firm value is high, firms reduce their dividend
payments. This makes dividends more exposed to fluctuations in the value of the firms, and
thus more risky in the short-run. Interestingly, the slope of the term structure becomes steeper
in high leverage states of the world, such as in recessions, consistent with the recent findings
of Bansal, Miller, and Yaron (2017).

I assess the quantitative success of the model in two ways. First, I compare simulated
model moments with untargeted moments of firm cohort cyclical characteristics. A testable

5 Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2003), Garleanu, Panageas, and Yu (2012), and
Kogan and Papanikolaou (2014) point out that the value of growth options has a different risk profile than
the value of assets in place. In their models, firms are endowed with future opportunities to invest in new
projects, that generate implicit leveraged claims on the future value of projects. In my model, firms have
opportunities to innovate, i.e. add new productive capacity and add new innovation opportunities. These
generate implicit leveraged claims on the future value of firms. This paper focuses on aggregate fluctuations
and captures features of firm entry, firm life cycle, and the firm size distribution, while the other papers focus
on explaining documented facts on the cross-section and predictability of stock returns.

6 Conditional on firm type, the growth rate of firms is independent of their size.
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prediction of the model is that the share of large firms in cohorts that enter in booms is higher
than average several years after entry. And indeed, the data support this prediction. I regress
the log number of one year old firms on real GDP growth at the time of their entry. Cohorts
that enter when GDP growth is 3 percentage point higher have 7.2 percent more firms, and 15.3
percent more firms with more than 100 employees when one year old. The same regression on
model simulations matches the coefficients, despite being untargeted in the model calibration.

Second, I evaluate the success of the model at generating aggregate fluctuations. The model
generates aggregate fluctuations in output, hours, entry and stock returns that are observed
in the data. Using the time series of the US real output over the period 1979:Q1 to 2016:Q4,
I recover the model implied TFP and MPR, and construct the model implied series for hours,
entry and stock returns. The model implied time series capture the timing and the magnitude
of the aggregate fluctuations. In particular, model-implied realized stock returns exhibit long
booms between recessions and sharp busts in every recession in the sample period, closely
resembling the realized returns in the data. This success is surprising because the model
parameters are only chosen to match unconditional moments, and the time series of shocks is
recovered only from realized output. This result highlights the importance of countercyclical
risk premia in explaining aggregate fluctuations in both asset prices and aggregate quantities.

What is the contribution of fluctuations in risk premia and innovation to fluctuations in the
real economy? I decompose the implied output and hours time series into components related
to TFP and the MPR by shutting off the fluctuations in one state variable at a time. I find that
fluctuations in MPR, and hence in the risk premia, increase the volatility of output and hours
by approximately 60 percent, by increasing innovation in booms and decreasing innovation in
busts.

Fluctuations in risk premia and innovation also slow down recoveries from financial recession
such as the Great Recession. Previous work on the Great Recession emphasized the role of
credit and collateral channels in reducing investment and slowing down the recovery.7 Here,
countercyclical risk premia reduce innovation in financial recessions and slow down recoveries,
even when markets are complete and firms can freely issue equity and risk-free obligations. I
measure the role of the fall in innovation during the Great Recession by replacing firm entry and
innovation by incumbents in the period 2007:Q4 to 2010:Q1 with unconditional average values,
and holding fixed all other shocks and innovation decisions before and after the recession. The
counterfactual exercise reveals a loss of 3.6 percent of GDP in 2016 due to reduced innovation
during the Great Recession, which accounts for half of the deviation from linear trend at the
time.

Finally, the model provides a new narrative for the differences between the outcomes of
the 2001 recession and the 2007-2009 Great Recession. In the mid to late 1990s risk premia
were low and many innovative firms entered and grew quickly, creating an economic boom.
Financial conditions started deteriorating in 2000, and stock prices fell by almost one half in

7 See for example Gilchrist and Zakraǰsek (2012), Garcia-Macia (2017) and Villacorta (2017).
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the following two years.8 But according to the model, there were many large innovative firms
active at the time, that offset the decline in productivity and kept output and employment
relatively high throughout the short 2001 recession. In contrast, the model suggests fewer
innovative firms entered between 2002 and 2007, and those that had entered did not grow as
fast. During the Great Recession, stock markets also fell by one half,9 reducing the incentives
to innovate. This time however, innovative firms made up a smaller fraction of the existing
US business sector, which rapidly shrank in response to the high risk premia. Fewer new firms
entered, and even fewer of them were innovative firms. The lack of innovation in startups and
incumbent firms during the Great Recession lead to a persistent decline in output, that a weak
recovery of productivity and risk premia after the Great Recession helped propagate.

This paper is most closely related to the literature that studies business cycles in models
with heterogeneous firms and investment in intangibles. Its main contribution is in explaining
the fluctuations in output, hours and firm entry with a single shock process, that also captures
the co-movement of stock prices with macroeconomic aggregates through countercyclical risk
premia. Section 5 provides a detailed discussion of the contribution to the literature.

The rest of the paper is organized as follows. Section 2 describes the model. Section 4
outlines the calibration and the quantitative evaluation of the model. Section 3 discusses the
key mechanism of the model. Section 5 discusses the contribution to the literature. Section 6
concludes.

2 Model

2.1 Overview and Setup

This section develops a heterogeneous firm industry model of the US business sector. In the
model the boundary of the firm is technological: firms produce homogeneous goods using labor
and non-transferable firm-specific organization capital.10 Startups innovate by creating new
firms, and incumbent firms innovate by increasing their stock of organization capital. All firms
take prices as given, including wages and state prices which are exogenous to the model.

The model departs from the literature in two key elements that capture the effects of
financial shocks on the nature of innovation. First, I introduce three ex-ante different types of
firms: traditional, innovative and mature. The technological difference between them is in the
duration of their organization capital. The organization capital of traditional firms is of shorter
duration, implying that they have less time to recover the costs of innovation. Traditional firms
therefore endogenously choose to innovate less and grow slower than innovative and mature
8 The S&P 500 dropped from 1,527 in March 24, 2000 to 800 in October 4, 2002, completing a 47.59% drop.
9 The S&P 500 dropped from 1,562 in October 12, 2007 to 683 in March 6, 2009, completing a 56.24% drop.
10 My concept of organization capital draws on previous work of Prescott and Visscher (1980) and Atkeson and

Kehoe (2005). It includes among other things brand value, formal and informal knowledge, training and task
assignments that contribute to the firms productive capacity and are non-transferable to other firms.
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firms. Second, I introduce state prices that capture countercyclical risk premia. When the
aggregate productivity unexpectedly falls, investors become less willing to hold risky assets
and demand higher expected rates of return. When risk premia are high, fewer startups are
funded and less resources are devoted to innovation within firms.

Time is discrete and indexed by t. The economy is populated by a large number of he-
terogeneous firms that take prices as given and indexed by i. Asset markets are complete,
and firms maximize shareholders value. Each firm allocates labor to production, innovation
and management. Entrepreneurs create startups, choose the duration type of the new firms,
and are free to enter and thus earn zero profits. Entry cost is type dependent and exhibits
a congestion externality. Aggregate TFP, wages and state prices follow exogenous stochastic
processes.

2.2 Incumbent Firms

Firms produce a homogeneous good Yit using firm-specific organization capital Kit and labor
Lyit in a Cobb-Douglas production function. They also allocate labor to innovation Lgit,
and management. Management requires λ units of labor per unit of organization capital.
Productivity is determined by an aggregate TFP state variable At and wages Wt, that are
taken as given. The profits of the firm are then the difference between output and the cost of
labor,

Πit = AtK
α
itL

1−α
yit −Wt(Lyit + Lgit + λKit), (1)

where α ∈ (0, 1) is the organization capital share in production.
Besides their stock of organization capital, firms are also characterized by their firm type

θit ≡ (δit, ψit), consisting of a depreciation rate δit and exogenous exit rate ψit. I choose a struc-
ture for the firm types that will later allow the model to match important empirical features of
firm distribution with few parameters. There are three firm types indexed by j ∈ {tr, in,ma}:
traditional (tr), innovative (in) and mature (ma). The depreciation rate of innovative firms
δin is lower than that of traditional δtr and mature firms δma, allowing innovative firms to
accumulate organization capital quicker. The exit rate of traditional firms ψtr is higher than
that of innovative ψin and mature ψma firms. Innovative firms can unexpectedly transform into
mature firms with a time invariant probability P (θma|θin). This captures the decline in mean
growth rate of firms as they age. For simplicity, I assume that the exit rates of innovative and
mature firms are the same, ψin = ψma, and that the probability of any other type transition is
zero.

Firms grow their productive capacity by creating new organization capital. They use labor
Lgit and existing organizational capital, to create BKβ

itL
1−β
git new organization capital, with B >

0 and β ∈ (0, 1). Firms face three kinds of firm-level uncertainty. First, the stock of organization
capital is subject to unanticipated multiplicative shocks εit, distributed according to log εit+1 ∼
N(−0.5σ2

K , σ
2
K). Second, firms receive an exogenous exit shock with probability ψit every
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period. Since organization capital is firm specific, its scrap value is zero, and shareholders are
left with nothing in case of exit. Third, and unique to innovative firms, is that the they may
unexpectedly become mature firms.

In sum, the law of motion for the organization capital of firm i can be written as:

Kit+1 =


(
(1− δit)Kit +BKβ

itL
1−β
git

)
εit+1, with prob. 1− ψit

0, otherwise.
(2)

2.3 Startups

Entrepreneurs create new firms from “blueprints”. There is a large stock of blueprints available
for free, each characterized by a predetermined firm types j. When a blueprint is implemented,
it becomes a new firm with the corresponding firm type θj and starts producing at period t+ 1
with a random initial stock of organization capital K̃it+1. The distribution of the initial stock of
organization capital is type and time invariant. It is distributed as the product of independent
log-normal and Pareto random variables:

K̃it+1 = K̃
(1)
it+1 · K̃

(2)
it+1, (3)

where log K̃(1)
it+1 ∼ N(µ̃, σ̃) and K̃

(2)
it+1 ∼ Pareto(ξ̃).

Implementation of blueprints is costly and requires the use of labor. The aggregate supply
of new entrants of type θj is denoted N j

t and requires Ljst units of labor, according to

N j
t = νγj (Ljst)1−γ, (4)

where the constant γ ∈ (0, 1) captures congestion in entry, and the constant νj ≥ 0 determines
the scale of entry for each type.

Entrepreneurs do not internalize their impact on congestion and are free to enter, implying
a zero profit condition on entry. Let Sjt be the expected value of a new firm of type j in period
t, then free entry in the startup sector implies an equilibrium condition for each type:

N j
t S

j
t = WtL

j
st. (5)

Substituting the aggregate supply of new firms into the equilibrium conditions gives an expres-
sion for the number of entrants,

N j
t = νj(Sjt /Wt)

1
γ
−1. (6)

The supply of new firms of duration type j is determined by the ratio of firm value to current
wages. The power 1/γ − 1 determines the elasticity of entry with respect to firm value. When
the value of new firms relative to wages is high, more labor is allocated to startups activity,
and as a result more firms enter.
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2.4 Aggregate Shocks

The aggregate TFP process At follows a trend-stationary path At = eµtZt, with trend growth
µ and a stationary AR(1) component Zt,

logZt+1 = φz logZt + σzet+1, (7)

where φz is the persistence of TFP, σz is the volatility of TFP and et+1 is an i.i.d standard
normal random variable. et+1 is the only aggregate shock in the model, and so I simply refer
to it as “the” aggregate shock process.

Wages follow the trend component of TFP,

Wt = eµt, (8)

which keeps the ratio of the TFP to wages stationary and equal to Zt.

2.5 Pricing Kernel

The pricing kernel Mt+1 captures the state prices in the economy. This means that the return
Rt+1 on every asset must satisfy 1 = Et[Mt+1Rt+1]. I specify an affine pricing kernel, such that
there is a constant risk free rate Rf and that the only priced risk factor is the shock to TFP
et+1. The market price of risk (MPR) ηt determines the sensitivity of state prices to realizations
of et+1,

logMt+1 = − logRf −
1
2η

2
t − ηtet+1. (9)

Some properties of this pricing kernel are important to mention. First, we can verify
that this pricing kernel implies a constant discount of risk-free assets at any maturity, since
Et[Mt+1] = 1/Rf . Second, any source of uncertainty that is independent of the unexpected
change in the aggregate TFP will be priced in a risk-neutral way. This includes all idiosyncratic
risk, implying that the innovation process is not distorted by uncertainty at the firm level.
Third, as long as ηt > 0, the pricing kernel assigns a greater weight to states where the
realization of et+1 are low. Investor therefore value more assets that pay when times are
(unexpectedly) worse. Furthermore, the conditional risk premium on assets with a payoff that
is correlated with the priced risk factor is proportional to the MPR. To see that, consider an
asset which pays exp(xet+1− 0.5x2) next period for some constant x (mean payoff equal to 1).
Then, its expected returns must satisfy

Et[Rt+1] = 1/Et[Mt+1 exp(xet+1 − 0.5x2)] = Rf exp(xηt),

implying a conditional expected excess return of xηt. Here x measures the quantity of priced
risk in the asset. Lastly, we can apply the Hansen-Jaganathaan bounds to the conditional
Sharpe ratio of any asset:

Et(Rt+1)−Rf

V ARt(Rt+1) ≤
V ARt(Mt+1)
Et(Mt+1) =

√
exp η2

t − 1 ≈ ηt,
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which means that the MPR also serves as an upper bound on the risk-return relationship in
the model.

The price of risk follows an AR(1) with persistence φη and mean η̄,

ηt+1 = φηηt + (1− φη)η̄ − σηet+1, (10)

where ση is the volatility of ηt. The shock to the price of risk is perfectly negatively correlated
with the shock to TFP. This implies a countercyclical risk premia: when TFP unexpectedly
goes down, the MPR goes up, and for a given risky cash flow the risk premiup go up and value
goes down. The assumption of perfect correlation between shocks to TFP and MPR provides
discipline to the model and allows recovery of all latent variables from observations of output
growth alone. This in turn is used below to generate testable predictions on asset returns
that indicate model success. However, this assumption is not necessary for the theoretical
mechanism in the model and can be relaxed to achieve better fit to financial data.

2.6 The Firm Problem

Firms take the aggregate TFP, MPR and wages as given, as well as their stock of organization
capital and duration type, and maximize shareholder’s value by allocating labor to production
and innovation. Let subscript t denote the aggregate state, and Vt the value function of firms,
then the firm problem can be written as a Bellman equation,

Vt(Kit, θit) = max
Lyit,Lgit

Πit + Et[Mt+1Vt+1(Kit+1, θit+1)], (11)

subject to the definition of profits Πit and the evolution of capital (equations (1) and (2)).
The solution to the firm problem is a type specific allocations of labor to production and

innovation that are proportional to the firm stock of organization capital and depends on TFP
and the MPR (see Section 3.1 for detailed solution). Let ljyt and ljgt be the allocations of type j
firms to production and innovation per unit of organization capital. This allocation determines
the type j expected growth of capital, Gj

t , and the profits per unit of capital normalized by
wages, πjt .

2.7 Aggregate Dynamics

The allocation of labor within firms is linear in organization capital, and the expected growth
rate of firms of type j is conditionally independent of size. Therefore we can aggregate the
stock of existing firms by type. The aggregate stock of capital of each type j, defined as
Kj
t =

∫
KitI(θit = θj)di, become state variables. The aggregate dynamics is represented by a
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state-space system:

Kj
t+1 = N j

tE[K̃] +
∑
j′
P (θj|θj′)Gj′

t K
j′

t , (12)

Lt =
∑
j

(ljyt + ljgt + λ)Kj
t + Ljst, (13)

Yt = (1− α) 1
α
−1WtZ

1−ω
α

t

∑
j

Kj
t , (14)

where expected firm growth Gj
t , entry N j

t and allocations of labor ljyt, ljgt, Ljst are the solution
to the firm and startup problems. In this system, the wages, the TFP and the MPR are
exogenous. The labor allocations, the firm output and the firm growth rates are endogenous
to the system.11 Next period stock of organization capital is equal to the sum of capital in new
firms and the remaining capital of incumbents, taking into account the probability of transition
between innovative and mature firms. The aggregate labor demand is equal to the demand of
labor in production, innovation within firms, management and startup implementation. Output
is the outcome of the allocation of labor to production and the total organization capital stock
in the economy.

If the expected capital growth rate is less than one for all firms in all states of the world,
then the aggregate stocks of organization capital and the aggregate labor are stationary, and
the output is trend stationary. This condition is however too strict in two respects. First, since
the expected growth is determined endogenously and the domain of shocks is not restricted,
this condition may be violated in some states. Second, in the quantitative implementation
of the model, the expected growth of innovative firms is typically greater than one in all
but extremely low economic conditions. A weaker condition is sufficient to guarantee mean
stationarity: the growth rate of remaining firms in each type is less than 1 on average, or
E[logP (θj|θj) + logGj

t ] < 0. This means that even if innovative firms grow at a high rate,
as long as their net expected growth rate is less then the transition rate into mature type the
stock of capital achieves a stationary distribution.

2.8 Discussion: Model Assumptions

Here I briefly discuss and motivate to assumptions of the model on wages and on the firm entry
technology.

11 This paper follows Zhang (2005) and İmrohoroğlu and Tüzel (2014) among others in studying a production
economy under an exogenous countercyclical market price of risk. Since I focus on the business sector, this
assumption seems appropriate. One could in principle make state prices endogenous by assuming a closed
economy and constructing a general equilibrium model where the intertemporal consumption choices of
households determine state prices. Such a model would have to generate similar countercyclical risk premia
to capture the dynamics of stock returns and so would generate similar implications for the dynamics of
innovation.
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Wage process. Real wages in the model follow the predetermined trend component of TFP
growth. In the data, output and hours are highly correlated, while fluctuations in wages are
weakly correlated with output (see for example Stock and Watson (1999), King and Rebelo
(1999) and Swanson (2004)). I therefore choose to capture the correlation of output and hours
and abstract from an explicit wage determination mechanism.

The deterministic wage and elastic labor supply in my model amplify the response of em-
ployment and output to fluctuations in TFP. In this, I follow a considerable literature that
studies what appears to be over sensitivity of employment to TFP (see for example Shimer
(2005) and Hall (2005)). The trend growth in wages implies a stationary relationship bet-
ween TFP and real wages, and since innovation is conducted using labor, delivers a stationary
number of new firms and innovation in the model.

Startup entry. The canonical models of firm entry typically have either a fixed supply of
new entrants (Hopenhayn, 1992), or a fixed cost of entry (Klette and Kortum, 2004). In my
model, entry requires labor and exhibits decreasing returns to scale, putting it right between
these two extremes. Luttmer (2007) motivates decreasing returns in entry with an unequal
distribution of scarce entrepreneurial skills. Workers are endowed with one unit of labor, that
can be used in production or transformed into entrepreneurial activity. The best entrepreneurs
are hired first. As entry increases, less skilled entrepreneurs are hired leading to decreasing
returns in terms of labor units. Another motivation, suggested by Sedlácek and Sterk (2016),
is that entry requires costly matching between ideas and investors. As the market for ideas
becomes tight, search costs increase leading to decreasing returns.

The model assumes that entrepreneurs have information on ex-ante firm type, but not on
firm initial scale or on future shocks. Allowing startups to know their type before entry is
essential to the mechanism that changes the composition of startups over the business cycle.
The available information to investors is the topic of a long literature starting with Jovanovic
(1982). In recent literature, researchers study entrepreneurship surveys and find that entrepre-
neurs possess considerable information on their firm type. Hurst and Pugsley (2011) document
that entrepreneurs vary in their expectations of growth, and their expectations for innovative
activities such as applying for a patent or a trademark. These expectations also correspond
to the ex-post actions of the firms, providing support for the information assumptions in this
model.

3 Mechanism
This section provides more detailed discussion of the firm problem and its implications to
aggregate dynamics.
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3.1 The Firm Problem

Firms solve the Bellman equation (11), reproduced here:

Vt(Kit, θit) = max
Lyit,Lgit

Πit + Et[Mt+1Vt+1(Kit+1, θit+1)],

subject to the definition of profits and the evolution of capital (equations (1) and (2)). Because
production and innovation are both homogeneous of degree one in capital and labor, we can
normalize all variables by capital and wages. Let vt(Kit, θit) = Vt(Kit, θit)/KitWt be the norma-
lized value function, πit = Πit/KitWt the normalized profits, lyit = Lyit/Kit and lgit = Lgit/Kit

the normalized allocations of labor, and Git = Et[Kit+1/Kit] the expected growth of firm i.
Then we can rewrite the Bellman equation as

vt(Kit, θit) = max
lyit,lgit

πit + eµGitEt[Mt+1vt+1(θit+1, Kit+1)], (15)

subject to the definition of normalized profits,

πit = Ztl
1−α
yit − λ− lyit − lgit, (16)

and the technological constraint on expected growth,

Git = (1− ψit)[1− δit +Bl1−βgit ]. (17)

Now capital does not appear outside of the value function in the Bellman equation, or any
of the constrains. Thus I safely eliminate it altogether from the problem. In fact, the solution
of the problem only depends on aggregate shocks and on the duration type j. Let vjt , πjt ljyt, ljgt,
Gj
t denote type j normalized firm value, profit, allocation of labor to production and innovation

and expected growth rate respectively, then

vjt = max
ljyt,l

j
gt

πjt + eµGj
t

∑
j′
P (θj′ |θj)Et[Mt+1v

j′

t+1]. (18)

The last Bellman equation gives rise to first order conditions with respect to labor allo-
cations. The allocation to production solves an intratemporal static problem independent of
type,

ljyt = (1− α) 1
αZ

1
α
t , (19)

and the allocation of labor to innovation solves an intertemporal problem,

ljgt =
(1− β)(1− ψj)eµ

∑
j′
P (θj′ |θj)Et[Mt+1v

j′

t+1]
 1

β

. (20)

Substituting the first order conditions back into the Bellman equation, we can solve for the
value, labor allocation and growth of firms, by iterating over (20) and

vjt = α(1− α) 1
α
−1Z

1
α
t − λ+ β

1− β l
j
gt + (1− ψj)(1− δj)eµ

∑
j′
P (θj′|θj)Et[Mt+1v

j′

t+1]. (21)

The value of new firms can then be derived from the solution to the firm problem

Sjt = Et[Mt+1v
j
t+1] · E[K̃] · eµt (22)
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3.2 Assets in Place and Growth Options

The value of firms can be decomposed into two components. The value of the assets in place
vjat, consists of the value of the cash flows derived from the current organization capital. The
value of the growth options vjot consisting of the market value of the opportunities of the firm
to innovate in the future.12 Together they add up to the value of the firm,

vjt = vjat + vjot. (23)

The value of assets in place is stated recursively as

vjat = α(1− α) 1
α
−1Z

1
α
t − λ+ (1− ψj)(1− δj)eµ

∑
j′
P (θj′ |θj)Et[Mt+1v

j′

at+1]. (24)

Subtracting the value of assets in place from equation (21) gives an expression for the value of
growth options,

vjot = β

1− β l
j
gt + (1− ψj)(1− δj)eµ

∑
j′
P (θj′|θj)Et[Mt+1v

j′

ot+1]. (25)

This expression highlights a feature of the model: the value of growth options is proportional
to a discounted value of future labor allocations to innovation. Equation (20) states that those
allocations are a convex function of the value of the firm. Therefore the shareholders evaluate
the value of the growth options as leveraged claims to to future firm value.

The value of growth options is more accounts for a larger share of innovative firms value
than of traditional firms value. To see that, first consider that for a given stock of organization
capital the value of an innovative firm is higher than the value of a traditional firm due to its
higher durability. This implies, according to the first order condition for innovation (equation
(20)), that innovative firms allocate more labor to innovation. In contrast, the cash flow from
the existing organization capital is independent of firm type. Hence the share of growth option
related value from every future period is higher for innovative firms. Following that logic, and
with parameters values that are described below, the value of the growth options makes up a
considerably larger share of the total value of innovative firms than of traditional firms.

3.3 Entry and Business Cycles

A recession in the model is induced by consecutive negative shocks et. In recessions, the TFP
goes down and the MPR goes up, reducing output, employment and the value of all firms.

12 The distinction between the value of assets in place and the value of grow option was first suggested by Berk,
Green, and Naik (1999). In their model however, firms make a binary decision whether to implement a new
project, whereas here firms make a decision regarding the quantity of innovation. In both models, the future
growth decisions by firms generate leveraged claims on future values, and are thus more exposed to aggregate
risk than the value of assets in place.
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Entry, which depends on the value of firms, falls for all firm types. But because entry of each
type of firm is determined by a separate technology, the relative value of firms affects the
composition of entrants.

Intuitively, there are two opposing forces affecting the relative value of firms. The fall in
TFP reduces the profits of all firms, but mean reverts in the long run. Traditional firms have
a large share of their value in short-term profits, and so are strongly affected by the temporary
fall in profits. Innovative firms that prioritize innovation over short-term profits, have a larger
share of their value in long-term profits that will be paid when TFP mean reverts. They are
thus less affected by the shocks. Therefore, holding innovation constant, the value of traditional
firms declines more than the value of innovative forms in response to a fall in TFP. This effect
would be the dominant effect in the risk-neutral environment that is often used in the industry
dynamics literature.

Second, innovative firms have a larger share of their value in the value of growth options
than traditional firms. Since the growth options are leveraged claim to the future value of
firms, they are more exposed to future movement in MPR. This makes them generally more
risky, since MPR is more volatile. When MPR rises, the value of growth options falls more than
the value of assets in place for all firms, and the values of innovative firms falls more than the
values of traditional firms due to their higher exposure to growth options.13 The composition
of entrants in recession depends on which effect is quantitatively dominant.

4 Quantitative Assessment
This section describes the calibration of the model and evaluates its quantitative success.

4.1 Quantitative Strategy

I quantify the model at a quarterly frequency. Since the model mechanism relies on a credible
valuation of risky assets and on dynamics of young firms, I supplement a standard set of
growth and business cycle moments with moments of financial returns and firm size and age
distribution derived from public-data on cohorts of all US firms. In particular, the calibration
jointly targets a rich set of data features that include (1) high expected equity premium and
high equity return volatility (2) low and stable risk-free rate (3) declining exit rate and growth
rate with the age of young firms (4) volatile expenditure shares on innovation within firms.

To construct target moments I use data from several sources. I use data from Center of
Research in Security Prices (CRSP) for equity returns and the risk-free rate. I use data on all
US firms that were born between 1980 and 2014 from the Business Dynamics Statistics (BDS)

13 The growth-option value also responds to the rise TFP. However, the magnitude of this response is similar
to the response of the assets-in-place value, and so moves the value of innovative and traditional firms in a
similar way.

14



provided by the Census Bureau to construct the firm size by age distributions and moments
of firm dynamics. To construct target moments for firm expenditure and profit shares I use
accounting data on public firms from Compustat. Finally, I use several time series from the
Bureau of Labor Statistics (BLS), including the consumer price index, labor productivity and
real output to construct standard business cycle moments. When using time series, I restrict
the sample period to 1980-2014 if not mentioned otherwise.

After calibrating the model, I assess it’s quantitative success using three measures:

1. Model fit. The success of the model at matching the firm size by age distribution and
firm dynamics, that are the main source of over-identifying restrictions in the calibration.

2. Cyclical dynamics of cohorts of firms. I simulate the model and measure the success
of the model at generating cyclical properties of cohorts of young firms observed in the
data.

3. Recovery of shocks from the data. I use the state space system implied by the
calibrated model to back out the shocks and latent variables of the model from output
data only. Then, I compare the time series of realized equity returns and firm entry
dynamics that are implied by the model to observed data time series.

4.2 Calibration

Several parameters of the model have a direct and reasonable interpretation in the data. These
parameters are presented in Table 1. Trend growth of TFP and wages µ corresponds to the
mean growth rate of labor productivity in the data. I set µ = 0.47%, to get an annual growth
rate of 1.88% that is observed in labor productivity timeseries from BLS. The real risk-free
rate Rf is set to match the average three month treasury yield collected by CRSP and deflated
by CPI, which is equal to 1.28% in the sample period (1980-2014).

Table 1: Directly calibrated parameters

parameter value source/target data model
µ 0.47% mean labor productivity growth 1.88% 1.88%
logRf 0.32% risk-free rate 1.28% 1.28%
α 0.30 ratio of gross profits to sales 0.30 0.30
δma 0.075 Corrado, Hulten & Sichel (2009)
φz 0.979 King & Rebelo (1999)
φη 0.904 log price-to-dividend autocorrelation 0.67 0.71
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The organization capital share in production α is equal in the model to the gross profit
margin of all active firms (the ratio of gross profits to sales). Let gross profits be equal to
GPit = AtK

α
itL

α
yit −WtLyit. Then, by substituting in the first order condition for production

labor demand (equation (19)) and dividing by output I get that the ratio of gross profits to
output is equal to the capital share. I use data from income statement of all public firms
available from Compustat to calculate the gross profit margin. I calculate the mean gross
profit margin for all firms with positive sales within each year, weighted by sales. The mean
gross-profit margin has been steadily rising in the sample period, from from 24.6% in 1980 to
a peak of 34.4% in 2007. I set α = 0.30 to be in the middle of that range.

There is no consensus in the economic literature on the appropriate deprecation rate for
intangible capital in general, and organization capital in particular. Corrado, Hulten, and
Sichel (2009) collect the available evidence on depreciation rates of various kinds of intangible
capital in US national accounts. They suggest values ranging from 60% per year for “brand
equity” (the result of activities such as advertising) to 20% year for research and development.
Gourio and Rudanko (2014) study another type of intangible capital – customer capital –
and propose a depreciation rate of 15% per year. Eisfeldt and Papanikolaou (2013) also set
depreciation rate of organization capital to 15% in annual terms. In my model, depreciation
rates vary by duration type. However, mature firms own the bulk of all organization capital
and so should correspond to the “macro” rate of depreciation. I set the depreciation rate of
mature organization capital to 7.5% percent per quarter, equivalent to 27% per year, which is
in the range suggested in the literature. The depreciation rates of traditional and innovative
firms is set by matching cross-sectional moments described later.

There are two persistence parameters in the model: one for TFP and another for the MPR.
For consistency with the business cycles literature I set the TFP persistence φz to the King
and Rebelo (1999) rate of 0.979. In the model, the MPR is the main determinant of the price-
to-dividends ratio. I set the persistence of the MPR φη equal to 0.904 to match the persistence
of the price to dividend ratio of S&P 500 according to CRSP calculation.

The rest of the parameters are presented in Table 2. The exit rates are set to match the
mean exit rate by age in BDS data. I simulate the exit rate of firms with two levels of exit
rates, one for the traditional firms and one for the innovative and mature firms, and allow the
entry shares to adjust to minimize the distance to the mean exit rate by age in the data, for
9 age groups. I then pick the exit rates that minimize the equally weighted squared distance.
Exit rates are 1.4% per quarter for long-lived and high-growth firms and 10.4% for short-lived
firms.

Parameters of firm investment technology (B, β, λ) and the process for the market price of
risk (η̄, ση) are jointly set to match moments of firm growth rate, expenditure on innovation
and equity returns. The firm growth rate target is the mean employment growth of 20-25
year old firms. I match that with the mean growth rate of mature firms, since they make
up the vast majority of firms at this age class. Similarly, I target the mean and variance of
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Table 2: Matched parameters

parameter value target/source data model
ψin = ψma 1.4% exit rate of 20-25 year-old firms 4.8% 5.5%
ψtr 10.4% exit rate of in first year 17.9% 17.8%
B 0.174 mean growth rate of 20-25 year-old firms 0.8% 0.8%
λ 0.037 mean EBIT/GP of public firms 0.37 0.38
β 0.74 std. EBIT/GP of public firms 0.040 0.039
η̄ 0.26 mean excess return (all market value weighted) 7.84% 7.84%
ση 0.086 std. excess return (all market value weighted) 16.0% 16.0%
δtr 0.056 firm size by age distribution (63 moments),
δin 0.028 see main text for description
P (θma|θin) 0.092
νtr 10×103

νma 2×103

νin 3×103

µ̃ 1.32
σ̃ 0.76
ξ̃ 1.43
σk 0.027
σz 0.33% volatility of hp-detrended output 1.62% 1.65%
γ 0.58 volatility of number of entrants 9.8% 9.7%

the ratio of earnings before interest and taxes (EBIT) to gross profits. I compute the sales
weighted mean of the ratio for public firms for every year in the sample period. I then take
the mean over all years (0.37) and the standard deviation (0.04) as targets. I match them with
the unconditional mean and standard deviations of the equivalent measure for mature firms,
computed as Πit/GPit. Equity returns in the model are returns on a diversified portfolio of
mature firms. Since equity in the data is levered, I calculate the model implied equity returns at
a constant leverage of 0.35 (ratio of debt to firm value), as suggested by Belo, Collin-Dufresne,
and Goldstein (2015).

I set firm specific parameters, including depreciation rates for traditional and innovative
firms (δtr, δin), transition rate between innovative and mature firm types P (θma|θin), entry
technology parameters (νtr, νin, νma), parameters of the initial organization capital distribution
(µ̃, σ̃, ξ̃) and the parameter of the idiosyncratic random shock to capital σk, by matching the
distribution of firm size by age distribution. I construct the target moments by normalizing
each cohort by the number of firms one year after entry and calculate the relative number of
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firms in each size by age cell. I consider 9 age groups and 7 size groups.14 I then take the
mean over all cohorts, and multiply all numbers by the mean number of firms one year after
entry (this way the number of firms in the model roughly matches the number of firms in the
US economy). I then simulate the size distribution of firms when shocks are set to their mean,
and minimize the equally weighted percentage difference from the data moments.15 Overall, I
set 10 parameters by matching 63 moments.

A final step sets the values of two key parameters: the volatility of TFP and the elasticity of
entry. Since they affect the calibrated values of all other parameters, I set them by guessing the
value and then verifying the match in simulated data. I set the volatility of TFP σz = 0.33%
by matching the simulated and observed volatility of simulated hp-filtered real output, that is
1.64%. Finally, I set the elasticity of entry γ = 0.58 by matching the simulated and observed
volatility of total entry, which is equal to 9.8% in the data.

4.3 Model Fit to Firm Distribution and Firm Dynamics

I compare unconditional simulated model moments to data moments from BDS. I simulate
the model for 5000 quarters, discard of the first 1000 quarters, then use the simulation to
construct the simulated moments. In the simulation, I keep track of each cohort full size and
type distributions.

I first compare the size distribution of firms by age group. The BDS data is binned at
predetermined age and size groups. For the comparison, I use 9 age groups (0,1,2,3,4,5,6-
10,11-15,16-20) and 7 employment size groups (1-4,5-9,10-19,20-49,50-99,100-249,250+). The
simulation is at a quarterly frequency, so I first construct the number of firms in every age
group by summing up over all ages that fall into a bin. For instance, age “0” in the data
corresponds to firms that entered in the previous 4 quarters, and are consequently 0-3 quarters
old, and age “16-20” corresponds to all firms that entered between 65 and 84 quarters ago. I
compute the distribution on a fine grid, by adding the measure of firms at a given size and
given age group over the simulated sample, then dividing by the total number firms in that
age group.

I present the fit of the distribution visually in figure 1. The graph shows the share of firms
that have more than a given number of employees (the complimentary cumulative distribution
function). Each line in the graph represents the simulated unconditional size distribution of
firms at different age bin. Markers represent the data moments. For clarity, I present the fit for

14 Age groups (0,1,2,3,4,5,6-10,11-15,16-20) and employment size groups (1-4,5-9,10-19,20-49,50-99,100-249,250
and above).

15 Discrepancies could arise between the moments generated by this simulation and moments generated by a
simulation with random stochastic draws. To deal with that, I simulate the model with the random stochastic
draws and verify that the moments are not too different. Indeed, the difference between the two methods of
simulation is not big, and is concentrated at the largest age group, where it deviates by 7 percent compared
to the steady state moments.
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6 of the age group. The share of large firms increases with the age of cohorts. This is happening
throughout the size distribution, and in particular in the largest size group (more than 250
employees). The model implied distributions have Pareto tails that become heavier with the
age of the cohort. The model does a remarkable job at fitting 63 detailed firm distribution
moments, despite having only three duration types and no age or size dependent technology,
and with only 10 degrees of freedom.
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Figure 1: Fit of size distribution

Notes: Horizontal axis is the employment size of firms. Vertical axis is the complimentary distri-
bution function (share of firms that are larger). Markers show size distribution of all firms that
employ at least one worker for different age groups. Data moments are based on Business Dynamics
Statistics (BDS) data provided by the Census Bureau. Lines are the model implied distribution for
the same age groups. See main text for details.

I then compare exit rates and growth rates. I construct the exit rates from the data using
the following formula:

exita,t = firmsdeatha,t/(firmsa,t + firmsdeatha,t),

where firmsa,t is the number of firms of age group a at year t, and firmsdeatha,t is the number
of firms that were in the data that exited in the last 12 months, and would have been at age
group a otherwise. I then take the unweighted average over all years in the sample as data
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moments, which makes sure I do not overweight large cohorts.
I construct the employment growth rates of continuing firms using the following formula:

growtha,t = njcca,t/(empa,t − njcca,t),

where empa,t is total employment of firms of age a at year t and njcca,t is the net jobs created
by continuing firms that are now at age group a. I also take their unweighted average as the
data moments. I construct the simulated moments in the exact same way.

Table 3 presents the comparison of data and model in exit rates and employment growth
rates. As opposed to the firm size by age distribution, these moments are not directly targeted,
yet the simulated exit rates and growth rates closely follow the exit rates and growth rates from
the data. Exit rates and growth rates fall quickly in the first five years, and settle after cohorts
are 10 years old. This pattern is captured in the model by the combination of heterogeneous
exit rates and endogenous growth rate of the three duration types. A noticeable exception
to the fit is in the growth rate of 1 year old firms (between the first observation of the firm
and the second). I explain this discrepancy with the possibility of measurement error of firm
employment at the first observation.16

4.4 Firm Cohort Cyclical Properties

The model makes predictions on the cyclical properties of cohorts of young firms: cohorts of
firms that enter in recessions have fewer firms, and a smaller share of those firms are innovative
firms. The first prediction can be observed in the data. I regress the natural logarithm of the
number of one year old firms on real GDP growth one year earlier, when the cohort of firms
entered, and on a linear time trend. Table 4 Panel A first column reports the result. Total
firm entry is pro-cyclical. Cohorts that enter when output growth is 1% lower have 2.4% fewer
firms.

The second prediction is harder to test since the number of innovative firms is not directly
observed.17 Instead we can observe the relative size distribution of firms in those cohorts.
Cohorts that have a larger share of innovative firms will have a larger share of large firms when
observed one year after entry. Table 4 Panel A second and third column test this prediction.
The number of large firms, with more than 100 employees, one year after entry goes down by
5.1% when GDP growth is 1% lower, more than the total number of firms. The difference
between the coefficients is also the coefficient when the dependent variable is the share of large
firms, and is significant at 0.01 level despite having only 34 observations.
16 This explanation has some support in the documentation of BDS. For instance, in FAQ it says: “The BDS

also excludes most very large single unit births (age 0 firms with only one establishment and more than 2499
employees) both from the entry measures (job creation) and from current employment in the birth year and
all future years. “ Systematic exclusion of firms based on size at entry but not when 1 year old may lead to
upward bias in estimates.

17 The type of firm could potentially be inferred from panel data at the firm level.
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Table 3: Exit rates and employment growth rates of continuing firms by firm ages

exit (%) growth (%)

age model data model data
1 17.9 17.9 6.8 12.7
2 15.2 13.7 5.3 5.3
3 12.9 11.8 4.1 4.2
4 11.0 10.5 3.2 3.4
5 9.5 9.5 2.5 2.8

6-10 7.1 7.7 1.5 1.8
11-15 5.7 6.1 0.9 1.2
16-20 5.5 5.3 0.8 0.9
21-25 5.5 4.8 0.8 0.8

Notes: Model and data implied exit rates and growth rates of continuing firms by the age of the
firm. Numbers are in percentage of existing firms/employment. Data exit rates and growth rates
are based on the Business Dynamics Statistics data provided by the Census Bureau for the period
1980-2014. Model exit and growth rates are calculated for TFP and MPR set to mean. See main
text for details.

I evaluate the quantitative model by replicating this regression with simulated data. I
use the same simulated sample described above and regress each annual observation on the
growth of output over the previous years.18 Table 4 Panel B presents the results. The model
is successful in capturing the magnitude of the effects, despite the regression coefficients not
being a target moments (the only target moments that captures entry dynamics is the volatility
of entry, which is used to set the elasticity coefficient γ in the startups technology). Simulated
coefficient on large firms and the difference are within standard confidence intervals distance
from the data coefficients. The simulated coefficient on total entry (Panel B first column) is
lower and significantly different, but on the same order of magnitude as the data coefficient.

4.5 Estimated Firm Types

Before moving into the aggregate implications of the model, I first look at some of the cha-
racteristics of the different firm types. Table 5 summarizes the main characteristics. Panel
A shows the dynamic properties of different firm types. Traditional firms exit at a high rate
of 36 percent per year, implying a firm life expectancy of 2.8 years. This captures the high
turnover in young firms. Innovative and mature firms exit at a rate of 5.5 percent per year,
which implies a firm life expectancy of 18 years. Traditional firms also allocate less labor to

18 That is growth in annual GDP is (Yt−1 + Yt−2 + Yt−3 + Yt−4/(Yt−5 + Yt−6 + Yt−7 + Yt−8)− 1.
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Table 4: Cyclical properties of firm cohorts

dependent variable: log number of one year old firms
Panel A: data Panel B: simulation

all large diff. all large diff.

real GDP growth at entry 2.39 5.10 2.71 1.69 5.06 3.38
(standard errors) (0.32) (1.18) (1.07) – – –
linear time trend yes yes yes – – –
number of observations 34 34 34 1000 1000 1000
R2 0.37 0.29 0.13 0.21 0.36 0.44

Notes: Regression results for firm-cohort data and firm-cohort model simulations. Dependent va-
riables are the logged total number of firms (all), the logged number of firms with more than 100
employees (large), and the difference (diff.) when the cohort is one year old. “real GDP growth at
entry” is the logged annual real GDP growth at the cohort’s year of entry (t-1). Panel A shows
regression results based on the Business Dynamics Statistics data provided by the Census Bureau for
the period 1980-2014 and BLS data for GDP growth. Data regression includes a linear time trend.
Standard errors (in parentheses) are calculated using Newey-West estimator with 5 lags. Panel B
shows regression results based on 1000 years of simulated data. See main text for details.

innovation and shrink by 2 percent per year on average, while innovative firms grow at a rate
of 28 percent per year. Mature firm size is relatively stable, and they grow at a rate of 0.8
percent per year. The differential growth rates are reflected in the profits of firms. Traditional
firms collect almost 20 percent of their revenue as profits. In the other extreme, innovative
firms keep only 1 percent of their revenue on average, and are often generating negative profits.
When their growth potential declines and they become mature firms, the profit shares jumps
to 11 percent. It is also interesting to see their impact on the economy. Innovative firms make
up 37 percent of entering cohorts on average, but make up only 16 percent of the population
of firms.

Panel B shows the properties of unlevered returns. Returns are calculated for a diversified
portfolio of firms of each type and take into account exit. The mean excess returns on traditional
firms is 2.5 percent, which is substantially lower than the returns on innovative and mature
firms. The excess returns on innovative firms is 6 percent per year and on mature firms 5
percent per year. The standard deviations of returns change proportionately to the mean
excess returns, so that Sharpe ratios are almost the same.
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Table 5: Estimated firm types

firm type

traditional innovative mature
Panel A: firm dynamics
annual exit rate 35.6% 5.48% 5.48%
mean employment growth rate -2.10% 28.2% 0.80%
mean profit share of output 19.5% 1.16% 11.1%
mean entry shares 44.4% 37.6% 17.9%
mean population shares 18.4% 15.7% 65.9%

Panel B: unlevered returns
mean excess return 2.55% 6.06% 5.10%
s.d. returns 5.07% 12.6% 10.5%
unconditional Sharpe ratio 0.50 0.48 0.49

4.6 The Term Structure of Equity

Recent literature has challenged existing asset pricing models by providing evidence on the
term-structure of equity risk premia. In an influential paper, van Binsbergen, Brandt, and
Koijen (2012) study the pricing of dividend-strips: claims to dividends at a specified interval in
the future. They show that dividend strips on one and two year claims on S&P 500 have had
higher mean excess returns than the underling index, which is unlikely in typical asset pricing
models. van Binsbergen, Hueskes, Koijen, and Vrugt (2013) and van Binsbergen and Koijen
(2017) provide additional evidence on other stock indices and more maturities that the excess
returns on dividend strips is declining with maturity.

Here, I show that the model is consistent with downward sloping risk premia for mature
firms. I base my argument on leverage dynamics, based on a similar argument by Belo, Collin-
Dufresne, and Goldstein (2015). For notation clarity, I suppress the firm and type indexes i
and j.

The starting point is a claim to a firm’s future profits starting at period n + 1, that is a
claim on {Πt+n+1,Πt+n+2, ...}. Let St,n be the value of a future profits claim of maturity n.19

Naturally, the value of St,0 is equal to the value of the firm net of time t profits, St,0 = Vt−Πt =
V̂t. The spot value of future profits claims of maturity n can be calculated by recursion,

St,n = Et[Mt+1St+1,n−1]. (26)

19 This is a theoretical definition that can be seen as the spot price of a futures or forward contract on the value
of the firm.
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Let st,n = St,n/KtWt be the normalized price of the claim. Then the initial condition is
st,0 = vt − πt = v̂t and the recursion equation is

st,n = eµGtEt[Mt+1st+1,n−1], (27)

where Gt is the expected growth of a mature firm at time t. The expected one period returns
on this claim Xs

t,n is then

Xs
t,n = eµGt

Et[st+1,n−1]
st,n

. (28)

The claim for future profits can be used to construct the values of other asset types and
their expected returns. Let pπt,n be the normalized value of a claim to profits πt+n. Then,
pπt,n = st,n−1 − st,n. The expected returns Xπ

t,n on a profit claim can be expressed in terms of
st,n and its expected return Xs

t,n,

Xπ
t,n =

Xs
t,n−1st,n−1 −Xs

t,nst,n

st,n−1 − st,n
. (29)

The solid line in Figure 2 shows the risk premia for profit strips, which are their uncondi-
tional expected excess returns E[Xπ

t,n]. The horizontal axis shows the maturity of the strip in
years and the vertical line the annualized expected returns. The term structure of risk premia
for profit strips in the quantified model is increasing in maturity. For reference, I draw the
unconditional expected returns on levered equity as the dotted horizontal line. The return on
equity is higher than the returns on maturities less than 10 years. The intuitive reason is that
firms respond to shocks by adjusting innovation, making short term profits less volatile and
future profits more volatile.

This may seem at odds with the evidence from dividend strip prices. However, the evidence
in the literature is on dividends and not on profits. Since the model is set in complete markets,
firms are indifferent between issuing debt and equity, and can choose any payout policy. Belo,
Collin-Dufresne, and Goldstein (2015) show in a different setup, that a simple dividend payout
policy that keeps the leverage ratio stationary is consistent with the data, and can generate
the downward sloping term-structure of risk premia in standard asset pricing models.

I specify the following payout policy, based on a leverage target L. Each period, firms repay
a fraction 1− τ of their outstanding debt Bt−1, and issue a constant fraction of their ex-profits
value in risk-free debt, LV̂t. The law of motion for debt is then,

Bt = LV̂t + τBt−1, (30)

and the dividend payments Dt follow

Dt = LV̂t − (Rf − τ)Bt−1 + Πt. (31)

The dividend payment at t+ n can be expressed as a weighted sum of future values of the
firm,

Dt+n = LV̂t+n − (Rf − τ)
n∑
j=1

τ j−1LV̂t+n−j − (Rf − τ)τnBt−1 + Πt+n. (32)
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Figure 2: Term structure of risk premia – profit and dividend strips

Notes: Unconditional risk premia (annualized expected returns minus the risk free rate) of profit
and dividend strips by maturity. Strips are claims to one quarter of profits or dividends. Horizontal
axis shows the time to maturity of the strip in years. Solid line shows the risk premia on profit
strips. Dotted horizontal line shows the unconditional risk premia on firm equity (7.84 percent).
Dashed and dashed-dotted lines show the risk premia on dividend strip at high (leverage ratio 0.4)
and low (leverage ratio 0.3) leverage states of the firm.

The value of a dividend strip of maturity n ≥ 1, P d
t,n can then be written as as a weighted

sum of future claims and previous debt,

P d
t,d =

n∑
j=0

qj,nSt,j − (Rf − τ)(τ/Rf )nBt−1 (33)

where qj,n are constant functions of L and τ (see Appendix A for exact expression). The
normalized value pdt,n = P d

t,n/KtWt is similarly expressed as

pdt,n =
n∑
j=0

qj,nst,j − (Rf − τ)(τ/Rf )ne−µG−1
t−1bt−1, (34)

where bt = Bt/KtWt is the normalized debt. Finally, the expected returns on dividend strips
of maturity n can be found using the expression

Xd
t,n =

∑n−1
j=0 qj,n−1X

s
t,j+1st,j+1 − (Rf − τ)(τ/Rf )n−1(Lst,0 + τe−µG−1

t−1bt−1)
pdt,n

. (35)
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I plot the expected excess returns on dividends strips for 1− τ = 1/15 and L = 0.021 to get
an average debt maturity of 3.75 years, and an unconditional mean leverage ratio E[Bt/V̂t] =
0.35 as suggested by Belo et al. (2015). I fix two debt levels bt−1 to capture high and low
leverage cases. In high debt the leverage is 0.4 on average, and in low debt it is 0.3 on average,
where averages are taken over 1000 years simulation. The dashed and dashed-dotted lines
show the term structure of unconditional risk premia on dividend strips. The high leverage
risk premia (dashed) has a steep downward sloping path in the first 7 years. The low leverage
risk premia (dashed-dotted) is less steep and starts climbing earlier. This exercise illustrates
that the model is consistent with a downward sloping term structure of risk premia.

4.7 Extracting Shocks from Output Data

In this section I use the state space system of the quantified model to recover the latent
variables in the model from a time series of output growth. Given the the aggregate state
vector (Zt−1, ηt−1, {Kj

t−1}) and the output growth ∆ log Yt there is a unique solution for the
random shock et, and hence a solution for the state vector (Zt, ηt, {Kj

t }), and other outcomes
including employment Lt, entry {N j

t } and realized returns on assets.
I use the real GDP growth for the US over the period 1979Q1:2016:Q4. I remove a linear

trend from the natural log of GDP, then take first difference to get the time series ∆ log Ŷ . I
start by guessing that TFP, MPR and the stocks of capital are at their unconditional means
at 1978Q4. Given the estimated state vector (Ẑt−1, η̂t−1, {K̂j

t−1}) and the law of motion for
aggregate organization capital stocks, I construct K̂t = ∑

j K̂
j
t . Then the estimated random

shock êt is equal to
σz êt = (1− φz)Ẑt−1 + α(∆ log Ŷt −∆ log K̂t). (36)

Equation (36) does not contain a term for the trend growth µ because trend growth has
already been removed from the data time series for ∆ log Ŷ .

Figure 3 shows the estimated process for TFP. The TFP process falls sharply in every
recession, reaching lows of -0.015 in both the 1982 recession and the Great Recession. It
reached a peak of 0.01 at 2000Q2. The standard deviations of êt are 0.62, smaller than the
assumed standard normal distribution.

Next, I use the estimated state variables to construct time series for hours, entry and
returns. These implied time series can be compared to observable time series to evaluate the
success of the model.

4.8 Hours, Entry and Returns

I construct the implied time series of hours using the expression for total labor,

Lt =
∑
j

(ljyt + ljgt + λ)Kj
t + Ljst.
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Figure 3: Estimated TFP process

Notes: Estimates of TFP (log Ẑt) that exactly match log-linearly detrended output for the period
1979:Q1 to 2016:Q4. Gray bars represent NBER recessions. See main text for details on procedure.

The data target for hours is the product of the civilian employment-population ratio, and the
average weekly hours in nonfarm business sector, both from the BLS.

Figure 4 presents the percentage deviation from the mean of the two time series. The hours
implied by the model are successful at capturing the shape and the timing of fluctuations in
labor supply, both at business cycle frequency and over the medium and long terms. The hours
implied by the model are somewhat more volatile than the hours in the data. These features
come mainly from the assumption that real wages follow a deterministic trend, and the high
correlation between output and hours in the data.

To capture the cyclical properties of cohorts of startups, I compare the model implications
for the number of one year old firms that are small (less than 100 employees) and large (more
than 100 employees). This is the time series visual equivalent to the regression evidence above.
For each cohort I simulate the entrants full size distribution then calculate the number of firms
in each size category. I the implied number of firms to a time series constructed using the
cohort data in the BDS, and based on the start year of the firm.

Figure 5 presents the percentage deviation of the number of small one year old firms (Panel
A) and the number of large one year old firms (Panel B), implied by the model and in the
data. The model implied entry is falling in recession and rising in recoveries. The model also
captures the magnitude of the fluctuations.

Lastly, I compute the realized returns on a diversified portfolio of mature firms. The implied
unlevered returns R̂t+1 are equal to the trend growth eµ times the expected firm organization
capital growth Ĝt times the ratio of the normalized value v̂t+1 to time t normalized ex-profit
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Figure 4: Total hours, model vs. data

Notes: Estimated and observed total hours worked at quarterly frequency logged and demeaned.
Dark blue line shows the hours from the data. Total hours series constructed as the product of
civilian employment-population ratio and average weekly hours in nonfarm business sector, both
from BLS. Light green line shows model implied hours worked based on recovered shocks. See
details in main text.

value v̂t − π̂t,
R̂t+1 = eµĜtv̂t+1/(v̂t − π̂t).

The levered excess returns X̂Rt+1 are computed using with a fixed leverage L̄ = 0.35, so that
X̂Rt+1 = (R̂t+1 −Rf )/(1− L̄).

For comparison I use CRSP realized value weighted returns on the market at quarterly
frequency minus 3-month treasury yield. For visual clarity, I filter both time series with 4
quarter standard moving average.

Figure 6 shows the model implied and the data time series of realized excess returns.
The model implied realized equity returns exhibit long booms between recessions and sharp
busts in every recession in the sample period, with similar magnitudes as in the data. This
is an unexpected success, because the parameters are only chosen to match unconditional
moments, and the shocks are extracted without taking into account any financial time series.
It emphasizes the importance of countercyclical risk premia in explaining aggregate fluctuations
in both asset prices and aggregate quantities.

4.9 Decomposition of Output and Hours

Fluctuations in output come from the direct effect of TFP, which moves output for a given
quantity of organization capital, and the indirect effect of TFP and MPR through innovation,
which changes the aggregate growth rate of organization capital. I Decompose the fluctuations
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Figure 5: Firm entry, model vs. data

Notes: Estimated and observed number of firms in one year old cohorts. Horizontal axis shows the
year of entry. Vertical axis is the deviation from mean in percentage points. Dark blue line shows
the observed number of one year old firms in the Business Dynamics Statistics data. Light green
shows the number of one year old firms in the model with estimated shocks as described in the main
text. Gray bars are NBER recessions. Panel A presents the time series for firms with less than 100
employees. Panel B presents the time series for firms with more than 100 employees.

in output to the direct effect of TFP and the indirect effects through innovation by keeping
one channel and shutting of the other two.

I construct counterfactual series for output using the estimated shocks Ẑt, but without
innovation and fluctuations in organization capital to measure the direct effect of TFP. The
constructed time series of output is then

log Ỹ 1
t = µt+ log K̄ + ( 1

α
− 1) log(1− α) + 1

α
log Ẑt, (37)

where K̄ is the mean aggregate stock of organization capital. The direct effect of TFP is then
just the fluctuation in logZt scaled by 1/α which is equal to 3.33 in the quantified model.

I measure the indirect effect of TFP through innovation in two steps. First, I construct
counterfactual entry N̂ j

t and firm growth Ĝj
t using the policy function of firms, and based on

29



1980 1985 1990 1995 2000 2005 2010

-0.4

-0.2

0

0.2

0.4

0.6

an
nu

al
iz

ed
 e

xc
es

s 
re

tu
rn

s 
(m

a) data model

Figure 6: Realized excess returns, model vs. data

Notes: Realized excess returns on stocks (data) and levered mature firms (data). Horizontal axis
shows the annualized returns minus the risk free rate. Dark blue line shows the annualized quarterly
returns on value weighted portfolio of all stocks from CRSP (VWRETD) minus the three-month
T-Bill yield. Light green shows the annualized quarterly returns on a diversified portfolio of mature
firms minus the risk-free rate implied by the model. The two series are filtered with a standard
moving average with 4 lags. Gray bars represent NBER recessions.

the estimated value of TFP, while MPR is set to mean value, ηt = η̄. Then, I construct the
counterfactual series of organization capital and output as there are no fluctuation in TFP and
MPR. I measure the indirect effect of MPR in a similar way, but with the estimated MPR and
TFP set to mean value in the first step.

Figure 7 presents the decomposition of detrended output into the there effects. The solid
lines is the linearly detrended output. The dotted line is the direct effect of TFP. The direct
effect capture the high frequency movements in output. The dashed and dash-dotted lines are
the effects of TFP and MPR on innovation respectively. The effects through innovation are
much smoother then the direct effect, yet they still generate a large quantity of the fluctuations.
The thin green line horizontal line is the residual when the three effects are taken out of the
detrended output. The small size of the residual suggests that the interaction in innovation
policy between TFP and MPR is not quantitatively important.

What is the share of the fluctuations that can be accounted for by fluctuations in MPR?
The standard deviations of output without the effect of MPR (direct effect of TFP + effect of
TFP on innovation) are 2.89 percent. The standard deviation of the detrended output is 4.64
percent. Therefore I conclude that fluctuations in MPR account for 100%-2.89/4.64 = 38%, or
around two fifths, of the fluctuations in output in the sample period.

I perform a similar exercise with labor. An important difference is that I decompose the
model implied labor demand and not the data on hours. Another important difference between
the decomposition exercises is that innovation activity directly affects labor.
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Figure 7: Decomposition of output

Notes: Decomposition of output time series. Horizontal axis is percent deviation from log-linear
trend. Solid thick line shows the real GDP from BLS. Dotted line shows the direct effect of TFP
through production and the allocation of labor to production. Dashed line shows the effect of TFP
on through changes in innovation rates. Dashed-dotted line shows the effect of MPR through changes
in innovation rates. Thin line shows the residual after accounting for the three effects. See details
in the main text.

Figure 8 shows the decomposition of implied hours. The thick solid line is the implied
hours from the extracted shocks. The dotted line is the direct effect of TFP. This effect is
smaller than the direct effect of TFP on output because the allocation of labor to production is
only one out of four different activities (production, management, innovation in firms, startup
activity). The effect of MPR through innovation contains both the impact on the quantity of
organization capital, and the allocation of labor to innovation.

This provides a new theory for the volatility of hours. When the market price of risk
declines, firms increase the allocation of labor to innovation more than the allocation to pro-
duction. This amplifies the initial shock and contribute to business cycle frequency fluctuations
in employment. The amplification mechanism also works in the opposite direction: MPR fell
sharply during the Great Recession leading to a decline in firm innovation activity and in
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startup activity, contributing to the decline in aggregate employment and hours.
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Figure 8: Decomposition of hours

Notes: Decomposition of hours time series. Horizontal axis is percent deviation from log-linear
trend. Solid line shows the hours implied by the model. Dotted line shows the direct effect of TFP
through the allocation of labor to production. Dashed line shows the effect of TFP through changes
in innovation rates and allocation of labor to innovation. Dashed-dotted line shows the effect of
MPR through changes in innovation rates and allocation of labor to innovation. Thin line shows the
residual after accounting for the three effects. See details in the main text.

4.10 Application: the Great Recession

An application of the quantified model is to evaluate the long-term impact of the Great Re-
cession. I conduct a counterfactual exercise to answer the following question: what would be
the real output in 2016Q4 if innovation activity would not have declined during the Great Re-
cession? To do that, I replace the entry and growth rate implied by the model with the mean
values of the rates in the period 2007Q4:2010Q1, and reconstruct the time series of output
from that period to the end of the sample at 2016Q4.20

20 2007Q4 is the official start of the Great Recession. While unemployment peaked at 2009Q2, the official end
of the Great Recession, aggregate employment reached a trough only at 2010Q1.
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Figure 9: Counterfactual scenarios for the Great Recession

Notes: Counterfactual exercise. Horizontal axis shows percent deviation from log-linear trend. Solid
line shows real output from the data (BLS). Other lines show the effect of replacing the innovation
during the Great Recession with unconditional mean values: entry set to mean (dashed), growth
rate of incumbents set to mean (dashed-dotted) and both effects (dotted). Vertical lines show the
counterfactual experiment period. All other innovation/production rates are the same across the
lines.

Figure 9 presents the results of the exercise. The solid line is the detrended output from the
data. The two vertical dashed lines indicate the treated period, where the entry and growth
of incumbents has been set to their long-term means. The drop in GDP accounted for by
the lack of innovation in the Great Recession is substantial: 4.4% at the end of the recession
and 3.6% at 2016Q4, six and a half years later. To further investigate the mechanism, I also
construct counterfactuals with just the entry set to the mean (dashed) and just the innovation
by incumbents set to the mean (dashed-dotted). The fall in entry accounts for 1% loss in GDP
and the fall in incumbent firms innovation accounts for 2.6% loss in GDP. I interpret this as
indication for an important role for the impact of financial shocks on innovation in the slow
recovery after the Great Recession.
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5 Related Literature
This paper contributes to three main strands of literature, each corresponding to a different
key idea. First, firms are a productive resource, and the distribution of firms is important for
understanding aggregate fluctuations. Second, innovation propagates shocks beyond standard
business cycle frequencies, and can help explain slow recoveries. Third, countercyclical shocks
to uncertainty contribute to aggregate fluctuations in output and employment. Following is a
brief discussion of this paper’s contribution to each respective literature.

A large literature, following Hopenhayn (1992), postulates a technological role for firms.
Firms enter, produce, invest and eventually exit, according to economic principles. The dis-
tribution of firms is then an aggregate state of the economy. Aggregate shocks that affect
firm investment decisions lead to changes in the distribution of firms, providing a channel for
transmission of aggregate shocks. Motivated by the experience of the Great Recession and the
availability of new datasets, economists have recently adopted this framework to study aggre-
gate fluctuations. Clementi, Khan, Palazzo, and Thomas (2015) and Clementi and Palazzo
(2016) study propagation of aggregate TFP shocks in a model that captures size dependence
in firm dynamics, but have little persistence of cohort characteristics.

The closest papers to this work are Moreira (2015) and Sedlácek and Sterk (2016). Moreira
(2015) studies the effects of the initial aggregate conditions on cohorts of young firms using
establishment-level data on all US firms. She finds that establishments entering when aggregate
output is high are on average larger, even several years after entry. In her model firm-level
output has a persistent effect on firm-level demand. Firms that enter when aggregate demand
is high produce more and then face persistently higher demand as they grow old. Sedlácek and
Sterk (2016) also document persistent cohort effects. They use the same public-use data as
this paper, and show that much of the variation in cohort employment is determined at entry
and is captured in the mean employment size of entering firms. They propose a model where
the ex-ante type composition of entering firms responds to aggregate conditions. Exogenous
demand shocks alter the efficiency of investment in “customer capital” and change the relative
incentive to create different types of firms. When the demand shock is high, firms with greater
growth potential enter and generate persistent differences across cohorts.

There are three main differences between this paper and Moreira (2015) and Sedlácek and
Sterk (2016). First, this paper documents differences in the cross-sectional firm size distribution
across cohorts, while the other two focus on the mean size of firms only. The distribution of firm
employment size in this paper provides both discipline to the quantitative implementation of
the model and untargeted moments to evaluate the cyclical predictions of the model. Sedlácek
and Sterk (2016) do use the size distribution of old firms to discipline their type-specific model
parameters, but they do not match the full firm size by age distribution nor evaluate their
model’s cyclical predictions with firm size distributions.

Second, the proposed mechanism in this paper is different. Moreira (2015) proposes a model
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in which the composition of entrants has a minor role in generating persistent differences across
cohorts. Instead, a direct effect of initial output on future idiosyncratic demand generates
persistence within firms, and leads to persistent differences across cohorts. Sedlácek and Sterk
(2016) propose a mechanism where the composition of entrants is essential for persistence,
based on ex-ante heterogeneity in firm growth potential. But the difference in the composition
of cohorts in their paper is driven by demand shocks that alter the technology of firm growth.
In this paper, the composition of firm cohorts varies due to countercyclical risk premia and
heterogeneous exposure to risk. Innovative firms enter when the risky growth options they own
are more valuable.

Third, this paper has different observable implications on the co-movement of firm entry,
output, hours and stock returns. In Moreira (2015), output by incumbents has a muted response
to the aggregate demand shocks that move entry, since firms want to maintain their level of
idiosyncratic demand. Also, in her model hours and discounts are constant. In Sedlácek
and Sterk (2016), incumbent firms are less affected by the demand shocks that drive entry
because they are closer to their optimal scale. Hours, output and discounts move due to other
shocks that are uncorrelated with demand shocks. Risk premia do not play any part in their
mechanism. This paper proposes a theory with testable implications where the same correlated
shock drives the co-movement of firm entry, output, hours and stock returns, as well as the
cross-sectional distribution of firm size by age.

Another strand of literature studies propagation of shocks beyond business cycle frequency
through innovation, based on the framework of Comin and Gertler (2006). Comin, Gertler,
Ngo, and Santacreu (2016), Bianchi, Kung, and Morales (2017) and Anzoategui, Comin, Gert-
ler, and Martinez (2016) propose extensions to Comin and Gertler (2006) that explain slow
recoveries through product innovation. Their mechanisms are based on the proposition that
product variety, the outcome of product innovation, is both a productive factor and an input
in more product innovation. When the economy is hit with shocks that reduce the incentives
to innovate, product variety falls. It is then harder to create new products, slowing down
recoveries.

This paper shares a similar channel for slow recovery: firms own organization capital that
is both a productive factor and an input into within-firm innovation. The key distinction is in
the type of shocks that affect innovation and in the treatment of risk.21 Bianchi, Kung, and
Morales (2017) explore shocks to the technology of investment as the main drivers of cyclical
innovation. Comin, Gertler, Ngo, and Santacreu (2016) and Anzoategui, Comin, Gertler,
and Martinez (2016) explore preference shocks to holdings of different types of assets, that
change the risk-free rate. In all three papers, the model equations are log-linearized, essentially
treating innovation as a riskless activity. In contrast, in this paper firms are treated as risky

21 Another technical difference is that in my model innovation in new firms is invariant to the existing stock
of organization capital, making the aggregate stock of organization capital stationary. Other papers feature
externalities that induce endogenous growth, as inRomer (1990).
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assets. Financial uncertainty shocks change the incentives to innovate, while the innovation
technology and the risk-free rate do not change. This paper also has implications for observed
firm dynamics.

Other papers study the idea that shocks to uncertainty contribute to aggregate fluctuations
in investment, output and employment. Bloom (2009), Gilchrist, Sim, and Zakraǰsek (2014),
Arellano, Bai, and Kehoe (2016) and Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry
(2016) document cyclical variations in idiosyncratic productivity risk, and use them to explain
aggregate fluctuations. Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe
(2011), Leduc and Liu (2016), Basu and Bundick (2017) study shocks to the volatility of
aggregate states. Ilut and Schneider (2014) and Bianchi, Ilut, and Schneider (2017) study
shocks to Knightian uncertainty in models where households are ambiguity averse.

This paper is different from that literature in two main ways. First, I model uncertainty
shocks as direct shocks to state prices, with a time invariant physical probabilities. This
approach has been successfully applied in the finance literature to capture cyclical variation
in bond and stock prices (see for example Ang and Piazzesi (2003) for bonds, and Ang and
Bekaert (2006) for stocks). While I do not explicitly model the investors that are generating
these state prices, the type of variation that I capture–including high and countercyclical risk
premia, stable and low risk free rate and return predictability–have long been the objective
of the consumption based asset pricing literature (see for example Campbell and Cochrane
(1999), Bansal and Yaron (2004) and Gabaix (2012)). Thus, any model of investor behavior
consistent with these facts should generate similar variations in state prices.

Second, in the surveyed literature, the main impact of uncertainty shocks is to delay in-
vestment in physical capital (and hiring if labor markets have frictions). When uncertainty
returns to normal the economy quickly recovers. In contrast, in my model shocks to uncertainty
affect entry of firms and innovation within existing firms. As discussed above, this contributes
to propagation of aggregate shocks beyond standard business cycle frequencies, and can help
account for slow recoveries.

Recent papers have questioned whether conventional models can match the term structure
of equity risk premia. These models generate countercyclical risk premia with an upward
sloping equity yield, while the empirical evidence using returns on dividend strips suggests a
flat or downward sloping equity risk premia (see van Binsbergen and Koijen (2017)). Indeed,
claims to firm profit strips in my model do earn an expected return that is increasing in
maturity. However, the empirical evidence is on dividend strips of levered equity, and not on
profits strips. I show that a simple dividend payout rule that keeps leverage stationary at the
firm level, along the lines suggested by Belo, Collin-Dufresne, and Goldstein (2015), delivers a
downward sloping term-structure for levered equity. This is because when firms hold a large
quantity of debt when the economy is hit by a bad shock they deleverage, and thus drastically
reduce their dividend payments in the short-term. This makes short-term dividends more risky
than long term dividends. Interestingly, the slope of the term structure becomes steeper in
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high leverage states, such as in recessions, consistent with the recent findings of Bansal, Miller,
and Yaron (2017).

6 Conclusions
This paper studies how financial uncertainty shocks that change risk premia contribute to
fluctuation in the real economy. It is motivated by the evidence that risk premia, or the
effective discount rate on risky assets, are high when economic conditions are bad and low
when economic conditions are good. Innovation is a real economic activity that creates risky
assets, and therefore is sensitive to fluctuations in risk premia. Innovation also propagates and
amplifies aggregate shocks because it simultaneously increases the productive capacity and
decreases the future cost of innovation.

The paper proposes a model that combines two main features–heterogeneity in the expected
duration of firms and time-varying market price of risk–to capture the response of innovation
to countercyclical risk premia. Some firms in the model have a longer expected duration, and
so endogenously choose to innovate more. When risk premia are low, the value of these firms
is high relative to the value of other firms, and more of them are created. If financial risk
premia remain low, these firms grow quickly and generate a boom. When risk premia are
high, fewer innovative firms are created and the business sector shrinks. In the quantitative
implementation of the model I find that this mechanism amplifies the volatility of output and
hours by 60 percent compared to a constant market price of risk.

The model provides a new narrative for the differences between the outcomes of the 2001
recession and the 2007-2009 Great Recession. In the mid to late 1990s risk premia were low and
many innovative firms entered and grew quickly, creating an economic boom. When financial
conditions deteriorated in 2000, innovation slowed down. But, according to the model, there
were already many large innovative firms active that offset the decline in productivity and kept
output and employment relatively high throughout the short 2001 recession. Also according
to the model, innovative firms made up a smaller fraction of the existing US business sector at
the beginning of the Great Recession. As risk premia increased, fewer new firms entered and
incumbents innovated less. This led to a persistent decline in output, that a weak recovery of
productivity and risk premia after the Great Recession helped propagate.
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A The Value of Dividend Strips
This section solves for the value of dividend strip of maturity n using the prices of options on
firm with maturities j ≤ n. Let Vt be the value of a firm with a profit process Πt and a debt
process Bt. Let V̂t = Vt − Πt be the after profit value of the firm. Define Mt,t+n = ∏n

j=1 Mt+j

as the n periods pricing kernel. The value of a single profit strip P π
t,n is then

P π
t,n = Et[Mt,t+nΠt+n].

The after profit value of the firm is the sum of all claims to future profits, V̂t = ∑∞
j=1 P

π
t,j. Let

St,n be the value at time t of a claim to the profits of the firm beginning at period t + n + 1.
Then St,0 = V̂t, and

St,n =
∞∑

j=n+1
Et[Mt,t+jΠt+j] = Et[Mt,t+n

∞∑
j=n+1

Et+n[Mt+n,t+jΠt+j]] = EtMt,t+nV̂t+n,

where the first equality applies the law of iterated expectations and replaces the order of
integration and summation. This means that St,n is also the value of a European call option on
the after profit value of the firm at time t+ n with strike at 0. The profit strip can be written
as P π

t,n = St,n−1 − St,n.
I specify the following payout policy, based on a leverage target L. Each period, firms

repay a fraction 1 − τ of their outstanding debt Bt−1, and issue a constant fraction of their
after profits value in risk-free debt, LV̂t. The law of motion for debt is then,

Bt = LV̂t + τBt−1,

Since the firm issues risk free obligations, the debt caries the risk-free rate Rf , and the dividend
payments Dt follow

Dt = Bt −RfBt−1 + Πt = LV̂t − (Rf − τ)Bt−1 + Πt.

Similarly, the dividend payment at time t+ n can be written as

Dt+n = LV̂t+n − (Rf − τ)Bt+n−1 + Πt+n.

Iterating over Bt+n−1, the dividend payment becomes a weighted sum of future values of the
firms, profits and previous debt,

Dt+n = LV̂t+n −
Rf − τ
τ

n−1∑
j=0

τn−jLV̂t+j − (Rf − τ)τnBt−1 + Πt+n.

Now, I use the fact that Et[Mt,t+nV̂t+j] = Rj−n
f St,j for every j < n and write the value of

dividend strip with n ≥ 1 as,

P d
t,n = LSt,n −

Rf − τ
τ

n−1∑
j=0

τn−jRj−n
f LSt,j − (Rf − τ)τnR−nf Bt−1 + St,n−1 − St,n.
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Define the weights qj,n as

qj,n =


−(Rf − τ)τn−j−1Rj−n

f L, if j < n− 1
1− (Rf − τ)R−1

f L, if j = n− 1
L − 1. if j = n

Then, the value of a dividend strip can be written as

P d
t,d =

n∑
j=0

qj,nSt,j − (Rf − τ)(τ/Rf )nBt−1
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